
The Developer's Guide To
Debugging: 2nd Edition

 Ebook

http://ebookslight.com/en-us/read-book/NvZBX/the-developer-s-guide-to-debugging-2nd-edition.pdf?r=GsfD5ozHsyDuzEft1vqj5hgwASHZRMPTNpPdUfePlOklg5CoYRsRK2pUa6439QsV
http://ebookslight.com/en-us/read-book/NvZBX/the-developer-s-guide-to-debugging-2nd-edition.pdf?r=HycAN9H3TJR5v14SnYRINjQ%2BAg1EfdiEFlKTFkqRYZupRIfsjhfwK1%2F7Kl22YhhP

Software has bugs. Period. That's true, unfortunately. Even the good old "hello, world" program,

known to virtually every C and C++ programmer in the world, can be considered to be buggy.

Developing software means having to deal with defects; old ones, new ones, ones you created

yourself and those that others brought to life. Software developers debug programs for a living.

Hence, good debugging skills are a must-have. That said, I always found it regretable that

debugging is hardly taught in engineering schools. Well, it is a tricky subject, and there are no good

textbooks. The latter can be helped, I thought. That's how the idea for this book was born. "The

Developer's Guide to Debugging" is a book for both professional software developers seeking to

broaden their skills and students that want to learn the tricks of the trade from the ground up. With

small inlined examples and exercises at the end of each chapter it is well suited to accompany a CS

course or lecture. At the same time it can be used as a reference used to address problems as the

need arises. This book goes beyond the level of simple source code debugging scenarios. In

addition, it covers the most frequent real-world problems from the areas of program linking, memory

access, parallel processing and performance analysis. The picture is completed by chapters

covering static checkers and techniques to write code that leans well towards debugging. While the

focus lies on C and C++, the workhorses of the software industry, one can apply most principles

described in "The Developer's Guide to Debugging" to programs written in other languages. The

techniques are not restricted to a particular compiler, debugger or operating system. The examples

are structured such that they can be reproduced with free open-source software.

Paperback: 242 pages

Publisher: CreateSpace Independent Publishing Platform; 2 edition (April 22, 2012)

Language: English

ISBN-10: 1470185520

ISBN-13: 978-1470185527

Product Dimensions: 6 x 0.6 x 9 inches

Shipping Weight: 15 ounces (View shipping rates and policies)

Average Customer Review: 4.7 out of 5 starsÂ Â See all reviewsÂ (6 customer reviews)

Best Sellers Rank: #1,115,606 in Books (See Top 100 in Books) #53 inÂ Books > Computers &

Technology > Programming > Languages & Tools > Debugging #226 inÂ Books > Computers &

Technology > Programming > Software Design, Testing & Engineering > Tools #2990 inÂ Books >

Computers & Technology > Programming > Software Design, Testing & Engineering > Software

Development

I like this book so much that I've given copies of it to my close friends. The Developer's Guide to

Debugging is a fantastic little book. This book focuses on the general topic of debugging C and C++

code; however, much of what is said can be useful for other programming languages (e.g.

ObjectiveC or C#). Although others have written books on debugging, this book really got to the

heart of the matter for me. The focus of the book is software development, but since modern digital

design is really software design also, I feel this book should prove equally useful to those doing

hardware design also. Of course my specialty, Electronic System-Level design using SystemC, fits

perfectly.One of the things I like is that the book is not overly long, and each section has a nice

summary of key concepts at the end. I also like that it covers topics for debugging code without

debug information and provides strategies for trying to finding hard to repeat bugs. They also point

out how debug tools can affect the bug, which brings up the "Heisen bug".Chapter 2, A Systematic

Approach to Debugging is the most important chapter of the book. If you don't read anything else,

read this chapter...twice. Viewing debug as a process is very important, and I think any engineer,

whether hardware or software, will benefit from this insight. We apply rigorous processes to most

everything we do in engineering until we get to this. I cannot recall the number of times I've seen

engineers pull up a waveform or dive into GDB before they've really considered where the issues

are. What usually follows are hours of wasted forays until they stumble on the problem. Follow the

systematic approach shown in this book and you will get to the root of the problem much quicker.

This chapter covers both strategy and provides a classification system for bugs.Subsequent

chapters provide insights into specific areas and provide valuable tips and approaches to

recognizing and solving problems in this area. After reading Chapter 2, you don't have to read the

book sequentially, but can go directly to any area. I recommend reading chapter 11, which will help

you to write code that is easier to debug. The table of contents is a great way to look at this book. In

the following, I have added my own comments following a hypen (-) after the chapter titles. 1. You

Write Software You Have Bugs - even Hello World has bugs 2. A Systematic Approach to

Debugging - Golden Rules and a must read for all engineers 3. Getting to the Root - Source Code

Debuggers 4. Fixing Memory Problems - finding memory leaks and bad pointer problems 5. Profiling

Memory Use 6. Solving Performance Problems 7. Debugging Parallel Programs - a topic not often

dealt with in other books 8. Finding Environment and Compiler Problems 9. Dealing with Linking

Problems 10. Advanced Debugging 11. Writing Debuggable Code - this is invaluable and should be

required reading 12. How Static Checking Can Help - finding bugs before you execute a line of

code! 13. SummaryA. Debugger Commands - a short list of key GDB and Visual Studio

commandsB. Access to tools - an excellent list of tools you might not be familiar withBecause

debugging is an ageless topic and because this book looks beyond specific tools, I feel this book

will continue to be useful for many years to come.In summary, I highly recommend this book for

software developers, verification engineers and system-level designers using SystemC (or any

standard programming language). RTL designers might not benefit quite as much, but chapter 2 is

worth the read.

I like the book because most of my computer courses taught very little about debugging and how to

use a development environment like Microsoft Visual Studion. This book does an excellent job at

explaining debugging which is essential to doing a good job at programming.

I've been programming as part of my job for many years and this book expanded my horizons, must

read for any systems programmer.Kindle NOTE:[soapbox] Kindle version is OK for this book if you

are reading cover to cover but it shows the usual artifacts of an automatic conversion without a

human editor reviewing the output and fixing things like chapter headings typeset in the same

font/size as the body text. IMO kindle is generally worthless for textbooks, technical manuals and

references because of its naive implementation and lack of features including syntax high-lighting,

linking words to glossaries, complete navigational interface, scrolling text one line at a time (to align

an image with its caption on the same page for instance), inline mathematics that respect

background colors and alignments, and a full text / full notes boolean search that organizes hits for

individual review. [/soapbox]Languages: C/C++ centric (all examples), most of this book applies to

ALL imperative languages.Operating System: It is UNIX centric but includes information for MS

Visual Studio.Full Disclosure:I don't even know what VS looks like, The only time I ever use

windows is fixing it for a friend, so my opinion could be worthless on Visual Studio, but the

information is there. I use Macs but don't program with XCode so I can't give you any info on that

specifically at all.In my experience Debugging is both an intuitive art (gained by years of experience

working on real machines with real code) and a very demanding science (making observations,

taking notes, well-formed hypotheses, careful testing one step at a time) My favorite quip is in

section 2.1 where it mentions a problem solution method suggested by R. Feynman: "Write down

the problem, think very hard, write down the answer." which is of course an "always true" statement.

What this book does is help you to understand how to identify the problem so you can write it down

(understand it) and then expands on the "think very hard" clause and makes numerous suggestions

of how to go about that (solve it). This leads us to another statement of Feynman: 'The key to

solving any problem is in looking at the problem in such a way that the solution becomes obvious.' If

you get the depth of that statement, let me say: this book is that good.ALSO:Gives a tutorial on GDB

using a subset of commands to get you started with GDB - This tutorial assumes you are learning

GDB - not basics of debugging, machine organization and memory layout.Includes an extensive

listing of up-to-date development tools, build tools, and testing tools.Gives several insights on

debugging library code. (The part I needed most! - very good stuff)Up-to-date Bibliography

references as late as 2009, all refs are in 21st century.Includes a xref between basic GDB

commands and Visual Studio debugging commands. (Appendix A)This book has increased my skill

level and enhanced my understanding of debugging - excellent work by T. GrÃ¶tker.

This book explained a number of debugging techniques, but most importantly it explained when and

why to use each one.The instructions were sufficient for me to get started, without too much detail to

slog through.

I thought this was a good overall book on debugging. The kindle version has some quirks with

spacing but is okay

Great!

The Developer's Guide to Debugging: 2nd Edition Debugging Applications for Microsoft .NET and

Microsoft Windows (2nd Edition) (Developer Reference) Delphi 5 Developer's Guide (Developer's

Guide) Java for the Web with Servlets, JSP, and EJB: A Developer's Guide to J2EE Solutions: A

Developer's Guide to Scalable Solutions Delphi 6 Developer's Guide (Sams Developer's Guides)

Delphi 4 Developer's Guide with CDROM (Sams Developer's Guides) Delphi Developer's Guide to

XML (Wordware Delphi Developer's Library) Client/Server Developer's Guide with Delphi 3 with

CDROM (Sams Developer's Guides) The iOS 5 Developer's Cookbook: Core Concepts and

Essential Recipes for iOS Programmers (3rd Edition) (Developer's Library) QuickTime for Java: A

Developer Reference (QuickTime Developer Series) Delphi Developer's Guide to XML, 2nd Edition

Software Engineering Classics: Software Project Survival Guide/ Debugging the Development

Process/ Dynamics of Software Development (Programming/General) Practical Guide to SAP

http://ebookslight.com/en-us/read-book/NvZBX/the-developer-s-guide-to-debugging-2nd-edition.pdf?r=RXrgD2AYSniLgcNqkvUjoz6upk7arKD9%2FSo2NBdOjUNXR%2Fe1w4fFuTa7wSob3aLU

ABAP: Part1: Conceptual Design, Development, Debugging CICS/VS: A guide to application

debugging (The QED IBM mainframe series) Inside the Microsoft Build Engine: Using MSBuild and

Team Foundation Build (2nd Edition) (Developer Reference) Microsoft .NET - Architecting

Applications for the Enterprise (2nd Edition) (Developer Reference) Tabular Modeling in Microsoft

SQL Server Analysis Services (2nd Edition) (Developer Reference) VBA Developer's Handbook,

2nd Edition Valgrind 3.3 - Advanced Debugging and Profiling for Gnu/Linux Applications Unix

System V: Understanding Elf Object Files and Debugging Tools (Programmer Collection)

http://ebookslight.com/en-us/dmca

